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Abstract—The entrance problem of convective magnetohydrodynamic channel flow between two parallel
plates subjected simultaneously to an axial temperature gradient and a pressure gradient is investigated
numerically. Both constant heat flux and constant wall temperature cases are considered. The solutions
match to the fully developed solutions after a certain entrance length. It is found that an applied transverse
magnetic field may reduce the entrance length of the velocity considerably, but has little effect on the
temperature development. At high Hartmann number, the velocity entrance length is inversely pro-
portion to M? as it was predicted by Shercliff in the absence of free convection. However, a sufficient
large free convection may prolong the developing process considerably.

NOMENCLATURE v, velocity, Y-direction;
B, magnetic field; v, nondimensional form of V;
b, nondimensional induced magnetic field; 1 (e
By, applied magnetic field; V.,  average velocity, — J Vdx;
C, constant defined by equation (29); Lo
c, specific heat; X, coordinate, perpendicular to the channel;
E, electric field; Y, coordinate, axial direction;
e, electric field parameter, Eq/V,,Bo; x,y, nondimensional forms of X, Y;
E,, constant electric field; Ve, entrance length.
Ec,  Eckert number, KV,?2/cLq or V/e(T,—To);
d, gravitational acceleration; Greek letters
Gr,  Grashof number, BgL*g/Kv or
BgL3 (T, — To)/v%; o, thermal diffusivity;
K, thermal conductivity; B, thermal expansion coefficient;
kq,k,, constants defined by equation (30); 0, nondimensional temperature defined in the
L, half-width of the channel; text;
M,  Hartmann number, BoL(o/u)"?; 1
N, Number of divisions in the x direction; Om, mean nondimensional temperature,j Bvdx;
(ae) / . ’
Nu,  Nusselt number, { — }s=1/ (64— 0m); U, absolute viscosity;
0x Mes,  Tmagnetic permeability;
P, pressure; v, kinematic viscosity;
D, nondimensional pressure; 2, mass density;
Pr, Prandt] number, v/a; G, electrical conductivity.
q, heat flux per unit area;
Re,  Reynolds number, V,,L/v; Subscripts
T, temperature;
U, velocity, X-direction; i, at ith position along x-direction;
u, nondimensional form of U; Js at jth position along y direction;
0, entrance condition, reference condition;
*Presently at Combustion Engineering, Inc., Chattanooga, W, wall condition;
Tenn. x, ¥, z, scalar components in x, y, z direction.
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INTRODUCTION

THE PROBLEM of combined forced and free convection
MHD flow in a vertical channel has been extensively
investigated in the fully developed flow region [1-8].
In this paper, we study the development of such flow
in the entrance region between two parallel plates.
The objective of this study is to examine the effects of
the applied magnetic field, free convection and dis-
sipations on the velocity and temperature development,
and determine the entrance lengths at various situ-
ations.

For the case of a purely forced convection, the
entrance problem has been investigated by several
authors. Due to the nonlinear inertia terms in the
momentum equation, all solutions obtained to date
have been approximate solutions. Five different ap-
proaches have been used.

The first effort to estimate the MHD entrance length
was made by Shercliff [9, 10]. He considered a linear
transient problem, in which the velocity varies with
time instead of with axial distance. The calculated
setting time in the linear problem is then converted
to entrance length by multiplying with the mean
velocity of flow. He found that for large M where
boundary layer approximation applies, the entrance
lengths are proportional to ReL/M?2 for parallel plates
and to ReL/M for rectangular channel and circular pipe
where Re and M denote the Reynolds number and
Hartmann number respectively and L is the charac-
teristic length. This method is not precise. The details
of the flow for the transient problem would not be
expected to agree with the flow in the actual steady-
state entrance problem.

In the second approach, the entrance region is
divided into an upstream and downstream zone. The
upstream zone is assumed of boundary layer formu-
lation. The downstream is described as a perturbation
of the fully developed solution. The solution of the
entrance region is then obtained by matching the two
solutions. This technique was first developed by
Schlichting [11] and was applied to the magnetic case
by Roidt and Cess [12]. Saric and Touryan [13] also
used this method in their work.

The third approach is the momentum integral
boundary-layer analysis previously developed by
Karman-Pohlhausen. Dhanak [14], Maciulaitis and
Loeffler { 15], Moffat [ 16], Hsia [17] and also reference
[13] used this approach to MHD problems.

The fourth method involves a linearization of the
inertia terms by introducing a stretched coordinate in
the direction of flow. It was introduced in the non-
magnetic case by Sparrow, Lin and Lundgren [18] and
applied to the MHD flow by Snyder [19], Chen and
Chen [20] and Hwang [21].

The fifth approach is the numerical technique. The
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governing equations are written in finite difference
form and then solved them on computer. Shohet {22],
Shohet, Osterle and Young [23], Hwang and Fan et al.
[24-27], Flores and Recuers [28] all used this method
to solve the entrance problem under different con-
ditions.

In this work, the problem of combined forced and
free convection magnetohydrodynamic channel flow
in the entrance region will be studied numerically.
Using the boundary layer approximation, the parabolic
equations are solved as an initial value problem. Both
the constant heat flux and constant wall temperature
boundary conditions are studied. At the entrance
section, however, only the parabolic velocity profile is
considered, although the method can handle any other
form of entrance velocity profiles.

PROBLEM FORMULATION

Consider an incompressible, viscous and electrically
conducting fluid flowing between two parallel vertical
plates due to an axial temperature gradient and a
pressure gradient. A uniform magnetic field B, is
applied transversely to the channel. We employ a
cartesian coordinate system with Y along the vertical
direction, X along the direction of the applied magnetic
field. For a steady state, laminar flow under the
standard Boussinesq approximation, the equations of
continuity, X- and Y- momentum, energy, magnetic
induction and state are, respectively,

U av
éxX oy

U(?U+V6U 3 (7P+ <(72U+62U>
PVax T ay) T Toax THMaxe T ay?

+B(V % B) x E} 2

U0V+V0V_ 6P+ . 62V+02V>
P%ax T ay)” “\ay TP M ex T oy?

+\:»1—(V x B) x E:l (3)
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N\ U-—+V—|=K|l—+— V x B)?
p‘( ax " <Y> <5X2+6Y2>+oy3( )
QUN: (VN2 [oV U\
AE) 42 Nl 4
“‘[ <@X) * <6Y>+<6X+6Y)J @
V2B+ouV x (V x B)y=0 (5)
p = pol1-B(T~Ty)] ©)

where the last two terms in equation (4) are the Joulean
and viscous dissipation.

In order to simplify the problem, we make the follow-
ing assumptions: (1) the walls are electrically insulating
and thermally conducting; (2) small magnetic Reynolds
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number, i.e. the induced magnetic field is negligible in
comparison with the applied field; (3) the Prandtl
boundary-layer approximation applies.

For a two-dimensional flow under assumption (1),
we can easily show from Maxwell’s equations and
Ohm’s law that B, = 0 and E, = const. = Eq. Further-
more, assumption (2) implies that the variation of the
transverse magnetic field B, is small. Thus B, can be
replaced by the constant applied magnetic field B,.
With this in mind, equations (1)—(4) under the boundary
layer approximation are reduced to

ao'+av_0 -
oX oY 7
v av 1 /dpP
V= -+ T-T,
U6X+ v (dY pog>+ﬁg( o)
02

+v Xz"f'”‘_(Eo—BoV) ®)
aT oT 3T v/iav c
Ut V= )+ (Ee—BoV)? 9
ax ey Yaxe (ax) T o Eom B )

where equation (6) has been used.
Equations (7)—(9) are supplemented by the condition

L
J Vdx = 2LV, = constant (10)

L

to determine U, V, T and P uniquely, where ¥, is the
average axial velocity of the flow.
We introduce the following dimensionless par-

ameters:

Y
X L vY V
X=—, y=—= ==, PR p—
L Re I}V, Vo
URe UL (P Po)+pogY VL
U= —— = e, B Re = ——
v, v poV;2 v
12 ,
M BOLG— , Pr=", e = Lo
24 ¥, BO
and
K(T-T:
( OA) (for constant heat flux)
Lq
b=1r_1
i {for constant wall temperature)
T.—T
' L4'
bg Zq (for constant heat flux)
Kv
Gr=< Bl (To—To)
g——(—-w—— ¢ (for constant wall temperature)
V
(K2
(for constant heat flux)
CLg
E. =< y2
\C_(7Tm:ﬁ;_) (for constant wall temperature).
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Equations (7)-(10) take form

m oy (11)
ax ('}y
- T 12
61; v dp+Gr9+¢?v (1) (12)

+
@x dy dy Re

00, a0 _10% ,(au 2 MEfetf
v = — s+ E | e—v
"o éy Prox? dx

1
J vdx =1,
o

The boundary conditions for this problem are

(13)

(14)

u=0,v=0

oo at x=1y=20

15)
—=1 =1
Em or 8

x=0,y20 (16

where equation (16) is obtained by the symmetry con-
ditions about the center line. The condition for § in
equation {15) may be either constant heat flux or
constant wall temperature. In addition, we need to
prescribe initial conditions for the flow. These are:

(17)

Here the entrance velocity is assumed to have a
parabolic profile.

NUMERICAL ANALYSIS
Equations (11)—(14) with conditions (15)-(17) are
solved numerically by a finite difference method.

¢
¥
J+l —

y (/,/) - =
/- =
< § L

2
|2 PR TN

F1G. 1. Mesh network for difference equations.
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Considering the mesh net work of Fig. 1, the trans-
verse coordinate can be expressed by

and all the variables and their derivatives at point (j, §)
can be written in the standard finite difference form.
Upon substitution, equations {1 1)~(17) become, respec-
tively,
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b,=0 p =0 (24)

where Simpson’s formula has been used in writing
equation (21).

The sequence of the computation is as follows:
starting from the entrance, the energy equation (20} is
solved first. Momentum equation (19} and the integral
form of continuity equation {21} are then solved simul-
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taneously. Finally, the value of u is obtained from
equation (18). These procedures are iterated, until a
fﬁqtiifﬁu accuracy is achieved. Then we pmeee{} to the
next step. The equations are linearized in such a
manner that whenever the product of two unknowns
occurs, one of them is given approximately by its
previous known value.

The numerical calculations were performed on 2

HATCO

CDC 6400 digital computer. The mesh size for different
Hartmann numbers are listed in Table 1.

Table I. Mesh size for computer computatmn

No of mesh

Step size

Step No. ¥ pmnt inx, N *
&4 < {0
1-4 00001 {0 128 x 1074
526 00002 40 25 x 1977
2140 00004 40 2:5 x 1074
4180 0-0008 20 50 x 1072
81 up 0-0016 20 50 x 10772
10 € MZ 50
-4 G-000038 80 128 x 1072
5-10 00001 80 125 x 1072
11-26 56002 40 25 x107%
21l up 0-0004 40 25 x107°?
M =100
-4 000001 30 25 %1077
5~10 000002 80 125 x 1072
11206 000004 40 28 %1078
21-40 00008 4G 2Ex 2
25 x 1077

400016 40

The computation is stopped when both the velocity
and temperature at the center line reach | per cent of
their respective fully developed values.

of the fully developed flow for Ec = 0 are given by the
following expressions. For constant heat flux case

Thia o~littimamc
1 HC MUV

t= C(coshkycoshkyx —coshk; coshk,x) (25)
fcosh k,
,LALL “{coshk x—coshk,}

(a x

Cﬁz«%&» {coshk,x —cosh i, }} 126}

For constant wall temperature case
M : ‘
b= ey M(tan v M) {cosh Mx—cosh M) (27)
=1 {28)

where
_ cosh kz sinh k, B cosh klgmhk;{\) o 29
k2 /
kin= —gz{w 3{) (30)
274 Re
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Having determined the velocity and temperature
profiles at each step, the mean temperature, defined by

1
’szf vfdx (31)
0
can be calculated by the use of Simpson’s rule as follows
N
1 ¥
O = N <gl,jvl,j+4k§1 024,102k,
Yoy
+2 z Boxr1,V2+ 1,_;)A 32)
k=1

The skin friction and Nusselt’s number and the wall
temperature are approximated by

v
p E(UN—IJ'—[]‘UNJ) (33)
P e
0,=1 {for constant wall temperature) (34)
2 i
Bo=0x¢y ;= %<4ﬂy'j—()N,,J+§> , Nu= Y
(for constant heat flux). (35)

RESULTS AND DISCUSSION

The numerical calculations were performed on a
CDC 6400 digital computer. The results for both con-
stant heat flux and constant wall temperature cases
are obtained.

(A) Developing velocity and temperature profiles of the
constant heat flux case

The developing velocity and temperature profiles for
different parameters are illustrated in Figs. 2-5. In
Fig. 2, the developing velocity and temperature pro-
files are plotted for M = 4, Gr/Re = 10and Pr=¢ =1,
Ec = 0. In this case, the velocity profiles have the form
not too differently from the non-magnetic isothermal
velocity profile. When Gr/Re becomes large and free
convection is important a central core is developed in
which the velocity is smaller than that of the surround-
ing as shown in Fig. 3 where Gr/Re = 100.

Figure 4 shows the developing velocity and tem-
perature profiles for M = 100. The Hartmann effect on
the velocity is readily seen and the distance needed to
develop the flow is much shorter than the nonmagnetic
case. However, the magnetic field has only a minor
effect on the development of temperature profiles. The
entrance length for the temperature field is little affected
by the magnetic field.
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0oL y=00!
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-04r y =0

y=00

-06
6-6w
FiG. 2. Developing velocity and temperature pro-

files for constant heat flux case and M =4,
Gr/Re=10,Pr=e=1Ec=0.

<

HoH W oponou

08

T

-04p V20

6-6w

Fi6. 3. Developing velocity and temperature pro-
files for constant heat flux case and M =4,
Gr/Re =100, Pr=e=1,Ec=0.

In Fig. 5, the effect of the dissipations is illustrated.
By comparing Fig. 5 and Fig. 3, we can see that the
dissipations have a similar effect on the velocity de-
veloping as that of free convection. The effect on the
temperature profiles by the dissipations is that they
give rise to a larger temperature difference between the
fluid and the wall, and a smaller temperature gradient
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F1G. 4. Developing velocity and temperature pro-
files for constant heat flux case and M = 100,
Gr/Re =10,Pr=¢ =1 Ec=0.

y=00 :
y=0i

05+

F1G. S. Developing velocity and temperature pro-
files for constant heat flux case and M =4,
Gr/Re =10, Pr=e¢=1,Ec=1.

near the wall. This is due to the concentration of the
ohmic and viscous heating near the wall where the
electric current and velocity gradient are large. As a
result of the higher temperature of the fluid near the
walls, larger buoyant forces will arise at that region
to accelerate the flow.
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(B) Hear transfer of the constant heat flux case

Some results on heat transfer are presented in this
section in terms of the local Nusselt number. In Fig. 6,
Nu is plotted for different values of M and Gr/Re. In
general the presence of the magnetic field and free con-
vection both lead to an increase of heat transfer. But
the effect of the magnetic field is more important in
the entrance region than in the fully developed region.
The opposite is true for the free convection effect.

Nu

30r

20

M=4
GriRe=100
=0

0* 103 0

F1G. 6. Local Nusselt number for constant heat flux case,
Pr=e¢ =1, Ec =0 and different values of M and Gr/Re.

Table 2 shows a comparison of the heat-transfer
results with those obtained by other authors for the
case in which free convection is absent. They appear
in very good agreement, considering the fact that there
is a 1 per cent limit in the calculation.*

Table 2. Comparison of the local Nusselt number
aty — oo for Gr =0, Ec =0

: Nu
M Perlmuttgga]nd Siegel Hwang et al. Present work
(26]
4 2-2753 2:2633 2-2892
10 2:5646

2-:5504 2-5798

The effect of dissipations on the heat transfer are
presented in Fig. 7, where we plot the local Nusselt
number for various values of Ec. The effect of dissipa-
tions is to decrease the heat transfer as in the case of
the fully developed flow [8].

*The results of the present work are obtained for Pr = |
at the location where both velocity and temperature at the
center line reach 1 per cent of their fully developed value.
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|
=0

o3 =Q-2
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Nu
5 N
Oto“ ol g2 1o [
¥

Fi6. 7. Local Nusselt number for constant heat flux case,
M = 4,Gr/Re = 10, Pr = ¢ = 1 and different values of Ec.

{C) Pressure gradient and friction factor of the constant
heat flux case
In Fig. 8, the modified pressure gradient

VP _dp  Gr
" T dy RePr” )’

which is constant in the fully developed flow, is plotted
against y for different values of M. The jumped pressure
gradient at the entrance due to the applied magnetic
field are gradually disappeared as the flow proceeds
downstream. The larger the value of M, the steeper the
jump of the pressure gradient and the faster it reaches
to the fully developed state.

ae_Gr
VPm(-dy RePry)
40

20k

-0

1074 Tox 102 'y

Fi1G. 8. Modified pressure gradient vs. y for con-

stant heat flux case, Gr/Re =10, Pr=01, e =1,
Ee = 0 and different values of M.

The friction factor, revealed by
dv
dx|ass’
is shown in Fig. 9. It follows about the same pattern
as the modified pressure gradient.
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4
dxlys

Fic. 9. Velocity gradient at the wall vs. y for
constant heat flux case, Gr/Re = 10, Pr = 01,
e =1, Ec = 0 and different values of M.

(D) Entrance lengths of the constant heat flux case

As we have already observed previously from the
study of the velocity and temperature profiles that an
applied magnetic field can greatly reduce the entrance
length for the velocity development while it has little
effect on the temperature development. This can be
seen more easily in Figs. 10 and 11. The entrance
lengths for the velocity and temperature development
are plotted against M? for different values of Gr/Re
and Pr. At large M, the entrance length for velocity
is approximately inversely proportion to M? as it was
predicted by Shercliff [6] in the isothermal case. For
M > 20 the relation can be approximated by the
eguation

Gr/Re=100

10 i i0° 107 m*
FiG. 10, Velocity entrance lengths vs. M? for con-
stant heat flux case, e = 1, Ec = @ and different values
of Gr/Re and Pr.
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Ye
! Pr=i
(Cr/Re=0, 10
———"Gr/Re=100
lo} Pr=0-|
GriRe=0,10
=Gr/Re=100
ok .
10 10? 10® 0* M

FiG. 11. Thermal entrance lengths vs. M? for constant
heat flux case, e =1, Ec =0 and different values of
Gr/Re and Pr.

However, the deviation to this asymptotic value will be
greater when the value of G'r/Re increases. For small
M, increasing Gr/Re and Pr increases the entrance
length.

For the special case Gr = 0, there has been some
results of velocity entrance length available in the
literature. Table 2 shows a comparison of these results
with the present results.

Table 3. Comparison of the velocity entrance length for
Gr = Ec = 0 (based on 1 per cent deviation of the center
velocity)

M Hwang et al.  Flores and Recuero

Present work

251 [28]
25 0-0844 0-0858 0-0868
4 00722 0-0808 0-0838
10 0-0292 00276 00319
00012

20 0-0011 0-0017

Flores and Recuero [28] claimed that the deviation
between their results and those of Hwang’s is due to
the different imposed initial condition of u. In [25] the
results were based on u = 0 at the entrance whereas
[28] used an initial condition that satisfies the govern-
ing equations for the entrance flow under the boundary-
layer approximation. The authors tried both conditions
on the same program, little difference in the result was
found. Therefore, it must be concluded that the devi-
ation of the numerical results are largely due to the
different numerical approach rather than the initial
condition of u.

Figure 12 shows the entrance lengths plotted against
Prior M = O0and 4. When Pr > 1, both the velocity and
temperature entrance lengths are about linear propor-
tion to Pr. However when Pr < 0'1, little change is
observed.

Ye

M=4

Velocity

Thermal M;Z *_l

e pei .
o) {0 ] 10 Pr

FiG. 12. Entrance lengths vs. Pr for constant heat
flux case, Gr/Re = 10, e = 1, Ec = 0 and different
values of M.

(E) Constant wall temperature case

For the case of constant temperature at wall, the gen-
eral trend of the velocity and temperature development
is similar to that of the constant heat flux case discussed
earlier. We shall briefly discuss the results in this
section. In Fig. 13 a typical set of the velocity profiles

|
3
e =002
v =0
2017
05
0 02 04 . 06 08 -0

Fi6. 13, Developing velocity profiles for constant wall
temperature case and M =4, Gr/Re =10, Pr=¢ = |,
Ec=40.

are presented. Since the fully developed velocity profile
for the constant wall temperature condition is indepen-
dent of the parameter Gr/Re, the velocity profile has
to readjust itself when it develops from one uniform
temperature to another uniform temperature. This ex-
plains the seemingly unorthodox phenomenon of
“over-shoot” in the figure,

Figure 14 shows a typical set of the developing tem-
perature profiles. It follows pretty much the same
pattern as in the constant heat flux case, but the path
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0 02 04 06 08 0 X

F1G. 14. Developing temperature profiles for constant wall
temperaturecase and M =4, Gr/Re =10, Pr =¢=1,Ec = 0.

of the developing is much longer than the constant heat
flux case. Similar situation occurs for the velocity
development.

In Fig. 15, the local heat transfer is compared for
the two cases for different values of M. The constant
heat flux case usually gives a larger heat-transfer rate,
except in the very beginning where the sudden tem-
perature change results in a bigger heat-transfer rate
for the constant wall temperature case.

\ ————— const. heat flux
— — — const. wall temp

0
1o

07 0 o'y
F1G. 15. Comparison of local Nusselt number for

Gr/Re =10, Pr =01, e = |, Ec = 0 and different
values of M.

The effect of the dissipations on heat transfer is shown
in Fig. 16. When the dissipations are sufficiently large,
the fluid temperature at beginning is smaller than that
of the walls, but it finally exceeds the wall temperature.
Thus, the Nusselt number reverses sign after a distance
and the heat is transferred from the fluid to the walls.
As the distance further increases, a point is reached
where the Nusselt number approaches infinity. At this
point the mean temperature of the fluid is equal to the
wall temperature. Beyond this point the Nusselt num-
ber is again positive as both

00
and —
X x=1

0,—0,

reverse sign.

HMT Vol. 17,No. 6 — E
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30

-30
10°*

02 o i

y
FIG. 16. Local Nusselt number for constant wall tempera-
turecase, M = 4, Gr/Re = 10, Pr = ¢ = 1 and different values
of Ec.

107

20 o ‘ .
1or 103 -

FiG. 17. Pressure gradient vs. y for constant wall tem-
perature case, Gr/Re =10, Pr =01, e =1, Ec =0 and
different values of M.

The local pressure gradient in the entrance region is
plotted in Fig. 17 for different values of M. The re-
adjusting of the flow can be also seen from the behavior
of the pressure gradient.
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CONVECTION MIXTE EN MHD DANS LA REGION D’ENTREE D’UNE CONDUITE

Résumé—On étudie numériquement le probléme magnétohydrodynamique d'un écoulement entre deux
plans paralléles et soumis 4 la fois a des gradients axiaux de température et de pression. On considére
les cas de flux pariétal constant et de température constante. Les solutions tendent vers celles pleinement
développées au bout d’une certaine longueur d’entrée. On montre que le champs magnétique transverse
appliqué peut réduire considérablement la longueur d’¢tablissement dynamique, mais quil a un faible
effet sur le développement thermique. Aux grands nombres de Hartmann, la longueur d’¢tablissement
dynamique est inversement proportionnelle & M?, comme prévu par Shercliff en labsence de convection
naturelle. Néanmoins une convection naturelle suffisamment forte peut prolonger considérablement le
processus de développement.

KOMBINATION VON ERZWUNGENER UND FREIER KONVEKTION
MAGNETO-HYDRODYNAMISCHE -KANALSTROMUNG IM EINLAUF

Zusammenfassung—Das Einlaufproblem konvektiver magneto-hydrodynamischer Kanalstromung zwi-
schen zwei parallelen Platten in Abhéngigkeit von einem gleichzeitigen axialen Temperatur- und
Druckgradienten wird numerisch untersucht. Sowohl der Fall mit WirmefiuB, als auch der mit
konstanter Wandtemperatur wird betrachtet. Die Ergebnisse stimmen mit den vollstindig abgeleiteten
Losungen nach einer bestimmten Einlaufiinge tiberein. Es ergibt sich, daB ein quer angelegtes
Magnetfeld die Einlaufiinge der Geschwindigkeit betriachtlich verringern kann, jedoch auf die Tem-
peraturentwicklung nur geringe Auswirkungen hat. Bei hoher Hartmann-Zahl ist die Einlauflinge der
Geschwindigkeit umgekehrt proportional M2, wie bei Nichtvorhandensein freier Konvektion von
Shercliff belegt wird. Eine geniigend starke freie Konvektion kann jedoch den Einlaufvorgang erheblich
verlangern.
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O MATHUTOIMAPOAUHAMUWYECKOM TEMEHUW BO BBOOHOM YYACTKE KAHAJIA
C COBMECTHOM BbIHYXAEHHOW M CBOBOAHOW KOHBEKLMEN

AHHOTAUHMA — YNCACHHO peluacTes 3agadya O MArHUTOTHAPOAMHAMHUYECKOM TEYEHWU BO BXOAHOM
y4yacTke Kanana, 06pa3oBaHHOro AByMSA napaj/ieibHbiMi NAACTHHAMMU, MPH ONHOBPEMEHHOM U3IMeE-
HEHWM AKCHANBLHOTO rpaaucHTa Temnepatypsl W nasneHus. PaccmaTpusatoTes ciyvau Kak ans
MOCTOSIHHOrO  TEILIOBOrO MoTOKa, TaKk W ANA MOCTOAHHOH Temnepatypbl cTeHkW. [loyuenHbie
pelleHHs COOTBETCTBYIOT PEUICHUAM 715 MOJHOCTBLIO PA3BUTOrO TeYEHUA Aaneko ot Bxoaa. Haitnero
YTO HAMOKEHHOE NOMCPEYHOE MATHUTHOE 110.1€ MOXKET 3HAYMTENLHO YMEHBUIMTL CKOPOCTL BO BXOI-
HOM YHYAacTKe, HO Mano BAWACT HA W3IMEHEHME Temrnepatypbl. [1pu Bbicokux yucnax aprmana
CKOPOCTb BO BXOAHOM y4acTke OoBpaTHO nponopunoHansHa M2, kak 31o u 6bino nonydeno Hlep-
KAnphoM A8 cayyas, Korua oTeyTeTayer ceobonnas kousekuus. OQHaKo, MPU HANHYUKM ZOBOILHO
60.16110# cBOBOAHOR KOHBEKUWUH PAIBUTHE TCHEHHS MOXKET ObITh 3aTAHYTO BHH3 N0 NOTOKY.
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